CAFE

유전자 편집

유전자편집 - 신화와 진실 제4장

작성자가온 고재섭|작성시간21.10.18|조회수315 목록 댓글 0

제4장 유전자편집은 위험하고
그 산물은 안전하지 않을 수 있다

 
신화

유전자편집의 정확성과 제어는 그것이 설계상 안전하다는 것을 의미한다.

진실
유전자편집의 의도하지 않은 결과는 거의 알지 못했던 위험으로 이어진다.

유전자편집이 "육종"이고 "정확"하며 결과가 "자연과 동일"하다는 주장은 종종 유전자편집 유기체가 설계상 안전하다는 것을 암시하려고 만든 것이다.

일부 GMO 개발자들은 더 나아가 유전자편집 식물이 전통적으로 자란 식물만큼 안전하다고 대놓고 주장한다.
Bayer는 기존 육종과 비교하여 CRISPR/Cas 유전자편집이 "전통적인 식물 육종에 비해 최종 작물의 안전성에 영향을 미치지 않으면서 더 간단하고 빠르고 정확하다"라고 주장한다.1
그리고 Corteva는 CRISPR로 편집된 식물이 "자연에서 발견되거나 전통적인 육종을 통해 생산된 식물만큼 안전한다"라고 말한다.2

농생물공학 업계는 그런고로 이러한 제품을 안전성을 보장하기 위한 GMO 규제 요건에 적용하는 것은 "비정상적"일 것이라고 주장한다.3 Corteva는 유전자편집 작물에 대한 안전성 테스트를 수행할 필요가 없다고 생각하고 CRISPR 생산 식물을 기존 방식으로 자란 식물을 테스트하는 것과 "같은 방식"으로 테스트한다고 말한다.4

그러나 이전 장에서 보았듯이 유전자편집은 정확하지 않으며 결과도 기존 육종과 동일하지 않다. DNA의 초기 절단은 게놈의 특정 영역을 표적으로 할 수 있지만, 후속 DNA 복구 프로세스는 게놈의 표적 및 표적 외 부위 모두에서 원치 않는 돌연변이를 유발한다.5,6,7
조직 배양이나 GM 변형과 같은 구식의 형질전환 GM 방법과 유전자편집 방법 모두에 공통적인 기술은 추가적인 돌연변이로 이어질 것이다(2장 참조).

이러한 의도하지 않은 유전적 변화는 유기체 내에서 유전자 기능의 패턴을 변화시킬 것이다. 식물에서 이는 생화학적 경로를 변경하고 구성 변화를 일으킬 수 있는데, 과학자들은 여기에는 새로운 독소 및 알레르겐이 생성되거나 기존의 독소 및 알레르겐 수준이 변경될 수 있다고 경고하고 있다.8,9,10

유전자편집은 유전체에 의도치 않게 외래 DNA를 추가할 수 있다

의도하지 않은 돌연변이의 존재는 인간과 동물 세포에서 잘 문서화되었으며 식물에서 더 많은 관심을 받기 시작했다.11
그러나 유전자편집의 또 다른 원치 않는 결과는 거의 주목을 받지 못했다. 의도치 않은 결과가 동물 및 식물 세포에서 어느 정도 발생하는지 그 영향이 무엇인지 불분명하다.

이 결과는 일본 연구자들의 연구에서 강조되었다. 이 연구는 외래 DNA를 도입하지 않는 것을 목표로 하는 CRISPR/Cas 유전자편집의 SDN-2(유전자 변경) 응용 프로그램에서도 외래 및 오염 DNA가 유전자편집 유기체의 게놈에 의도하지 않게 통합된다는 것을 발견했다.12 이러한 원치 않는 결과는 CRISPR에 국한되지 않고 다른 유형의 유전자편집에서도 발견되었다.13

특히, 연구자들은 마우스(쥐) 세포와 배아에서 CRISPR/Cas 유전자편집의 효과를 살펴보고, 의도하지 않게 획득된 소 또는 염소 DNA가 편집되었음을 발견했다. 추적을 해보니 마우스 세포의 표준 배양 배지에서 소 또는 염소에서 추출한 송아지 태아 혈청 및 염소 혈청을 사용한 것이었다.12
훨씬 더 우려스러운 것은, 마우스(쥐) 게놈에 삽입된 DNA 서열 중 소 및 염소 레트로트랜스포존(점프 유전자)과 마우스 레트로바이러스 DNA12(레트로바이러스에는 암을 유발하는 '종양-레트로바이러스'와 AIDS로 이어질 수 있는 인간 면역결핍 바이러스인 HIV가 포함됨)가 있다는 점이다. 따라서 유전자편집은 바이러스를 포함하지만 이에 국한되지 않는 질병 유발 유기체의 수평적 유전자 전달(부모에서 자손으로 DNA의 '수직' 전달 이외의 다른 방법에 의한 유전 물질 전달)을 위한 잠재적 메커니즘이다.14

또한 이 연구에 의하면 E.coli 박테리아 게놈의 DNA가 의도하지 않게 표적 유기체의 게놈에 통합될 수 있었다. E. coli DNA의 출처는 벡터 플라스미드를 생산하는 데 사용된 E. coli 박테리아 세포로 추적되었다. 플라스미드는 작은 원형 DNA 분자인데 CRISPR/Cas 구성 요소(및 SDN-2 응용 프로그램에서는 DNA 복구 템플릿)의 제조에 대한 지침을 제공하는 유전자를 세포에 전달한다. 중요한 것은 연구원들이 벡터 플라스미드 준비의 표준 방법을 사용했다는 것이며 그래서 이러한 유형의 오염이 일상적으로 발생할 수 있다는 것이다.12

이러한 발견은 유전자편집 동물과 분명히 관련이 있다. 그러나 식물 유전자편집과 어떤 관련이 있을까? 동물의 성분을 포함하는 조직배양 배지는 유전자편집 식물을 만드는 데 사용되지 않으므로 동물 DNA의 존재는 문제가 되지 않는다.

그러나 유전공학자가 유전자편집 도구를 플라스미드에 의해 암호화된 식물 세포에 전달하는 경우, 외래 DNA가 편집 중인 식물의 게놈에 우연히 통합될 수 있는 두 가지 방법이 있다. 첫째, 유전자편집 도구를 인코딩하는 플라스미드 전체 또는 이의 단편이 통합될 수 있다. 둘째, 플라스미드를 증식시키는 데 사용되는 E.coli 박테리아 게놈의 DNA는 종종 유전자편집 과정에서 사용되는 최종 플라스미드 제제를 오염시킬 수 있으며, 따라서 결국 유전자편집 식물의 게놈에 통합될 수 있다.

외래 플라스미드 또는 박테리아 게놈 DNA는 식물 유전자편집 중에 우연히 통합될 수 있다. 따라서 규제 기관은 그러한 결과가 발생했는지 여부를 확인하기 위해 개발자가 제품에 대해 적절하고 심층적인 분자 유전적 특성 분석을 수행하도록 법적으로 의무화해야 한다.

위험 판단에 유용하지 않은 SDN 구분

SDN-1, -2, -3의 구분은 유전자편집 유기체의 각 유형에 대한 위험 수준을 구분하는 데 유용하지 않다. 이는 SDN-1, -2, -3이 실제 결과가 아닌 유전자편집의 의도를 나타내는 것인 반면, 유전자편집 이벤트의 결과는 의도와 매우 다를 수 있기 때문이다.

또한 게놈의 작은 변화도 큰 영향을 미칠 수 있다.15,16 런던에 기반을 둔 분자 유전학자인 Michael Antoniou 박사는 “작은 유전적 변화도 극적이고 새로운 효과를 초래할 수 있기 때문에 유전적 변화의 크기가 위험을 결정하지 않는다. 예를 들어, 유전자편집 사건에 뒤따르는 작은 규모의 결실 또는 삽입이 새로운 유전자 서열을 생성하는 결과를 초래할 수 있고 이는 기능적 결과를 알 수 없는 새로운 돌연변이 단백질을 생성할 수 있다. 그렇기 때문에 유전자편집으로 인한 모든 돌연변이는 그들이 하는 일과 그 유형 그리고 그것이 얼마나 많은지에 따라 평가되어야 한다.”고 하였다. 

SDN-1 및 -2 응용 프로그램은 외래 DNA를 게놈에 영구적으로 통합할 의도가 없기 때문에 종종 SDN-3보다 덜 파괴적인 것으로 간주된다. 그러나 유발된 돌연변이가 유형이 더 적거나 더 작거나 덜 위험하다는 증거는 없다. 실제로 SDN-1 절차에서도 큰 규모의 DNA 결실, 삽입 및 재배열을 포함한 주요 돌연변이가 생성되는 것으로 밝혀졌다.17,18

실제로 모든 유형의 유전자편집(SDN-1, -2 및 -3)은 한 번에 여러 유전자를 대상으로 하거나 반복적인 순차적 적용을 통해 다중 접근 방식을 사용하여 게놈의 여러 위치에서 수행할 수 있다.19,20 ,21 따라서 몇 가지 개별적인 작은 변화가 결합하여 부모 유기체와 매우 다른 유기체를 생성할 수 있기 때문에, 이루어진 변화가 "작고" "자연에서 일어날 수 있는 것과 유사하다"는 주장은 오해의 소지가 있다. 작은 변화라도 큰 효과를 낼 수 있지만 유전자편집을 통해 이루어진 많은 작은 변화는 훨씬 더 큰 변화를 초래할 수 있으며, 이는 편집된 식물의 생화학 및 전체 구성에 의도하지 않은 변화의 가능성을 증가시키고 작물의 성능과 소비자의 건강 두 가지 모두에 알 수 없는 결과를 초래할 수 있다.

따라서 크고 작은 변화의 위험을 주의 깊게 평가해야 한다. 유전자편집 유기체에서 원치 않는 유전적 변화가 어느 정도 연구되었지만 유전자편집 제품에 대한 안전성 연구는 수행되지 않았다. 이는 GMO 제품이 시장에 출시되기 전에 EU 법률에 따라 의무적으로 연구되어야 한다.

항생물질 내성 유전자를 함유한 유전자편집 소

유전자편집이 자연과 동일하다거나 설계상 안전하다는 주장은 유전자편집 뿔이없는소의 경우에서 알 수 있듯이 회의적으로 보아야 한다.

2019년 미국식품의약국(FDA) 연구원들은 생명공학회사 Recombinetics에서 유전자편집한 두 송아지13의 게놈을 SDN-3(유전자 삽입) 절차의 TALEN 도구를 사용하여 분석했다.
유전자 조작의 목적은 전통적으로 사육된 뿔이 없는 소에서 가져온 POLLED(뿔없는) 유전자를 게놈에 삽입하여 뿔이 자라는 것을 방지하는 것이었다.

Recombinetics 과학자들은 소에 사용된 유전자편집이 매우 정확하여 "우리 동물은 표적 외의 사건이 없다"고 주장했다.22 이 회사의 경영진은 2017년에 Bloomberg에 이렇게 말했다. "우리는 유전자가 어디로 가는지 정확히 알고 정확한 자리에 놓는다. 우리는 표적외 효과가 전혀 없음을 증명하는 모든 과학 데이터를 갖고 있다."23

Recombinetics와 관련된 학계 연구자들의 논평은 소에 사용된 유전자편집이 정확하고, 초래된 변화가 자연적으로 발생할 수 있는 것과 거의 동일하며, 원치 않는 형질을 가진 동물은 번식 프로그램에서 모두 제거될 것이라고 주장했다.24

그러나 이러한 모든 주장은 FDA 과학자들이 발견한 사실에 의해 거짓임이 입증되었다.

송아지 게놈 내 유전자편집 과정의 표적 부위 중 하나에 POLLED(뿔없는) 유전자가 계획대로 삽입됐다. 그러나 다른 의도된 유전자 편집 위치에 전체 원형 플라스미드 DNA 구성의 두 복사본이 의도하지 않게 통합되었다. 이 복사본은 POLLED 시퀀스(서열)를 운반하였는데, 이 시퀀스는 SDN-3 절차에서 복구 주형 DNA(repair template DNA)  역할을 하였다. 이러한 의도하지 않게 통합된 플라스미드에는 3가지 항생제(네오마이신, 카나마이신 및 암피실린)에 대한 내성을 부여하는 완전한 유전자 서열이 포함되어 있다.13

이러한 항생제 내성 유전자의 존재가 동물이나 동물의 제품을 섭취하는 사람의 건강에 영향을 미칠 수 있는지 여부는 알려져 있지 않다. 그러나 조사할 가치가 있는 한 가지 위험이 있다. 그것은 이러한 유전자가 질병을 유발하는 박테리아로 전이되어 항생제에 내성을 갖게 되어 인간과 동물의 건강을 위협할 수 있다는 것이다.25

Recombinetics 과학자들은 부적절한 분석 방법을 사용했기 때문에 이러한 의도하지 않은 효과를 놓쳤다.22 이 동물을 소유한 Recombinetics의 자회사인 Acceligen의 CEO인 Tad Sontesgard는 "예상한 것이 아니었고 우리가 살펴보지도 않았다"라고 말했다. 그는 더 완전한 점검을 "했어야 했다"고 인정했다.23


FDA 과학자들의 이러한 발견으로 브라질은 유전자편집된 뿔없는소 증식 계획을 취소했다.26

개발자는 유전자편집에 의해 유도된 변화가 안전한지 아니면 자연에서 일어날 수 있는 것과 같은지 스스로 규제하고 결정할 수 없다. 의도하지 않은 영향에 대한 철저한 검사를 보장하기 위해 엄격한 규제가 있어야 한다. 일반적으로 사용되는 스크리닝 방법은 많은 돌연변이를 놓칠 수 있으므로 2장에서 언급한 것처럼 long-range PCR과 long-read DNA 시퀀싱의 조합을 사용해야 한다. 또한 유전자편집 유기체가 제기하는 공중 보건 및 환경에 대한 위험을 더 잘 이해하기 위해 안전성 연구가 수행되어야 한다.



왜 육종보다 유전자편집인가?
 
유전자편집한 뿔없는소 벤처의 실패는 분명한 질문을 제기하고 있다. 개발자들은 홀스타인 소를 유전자편집하는 대신에 왜 육종을 통해 그 유전자를 엘리트 홀스타인 품종에 교배시키지 않았을까?

위에서 인용한 학술 과학자팀(그 중 일부는 Recombinetics와 관련이 있음)은 원칙적으로 전통적인 육종으로 이러한 목적을 달성할 수 있지만 실제로는 비용이 엄청나게 많이 든다고 썼다. "어떤 육종가도 이런 식으로 번식할 여유가 없습니다." Recombinetics 과학자들은 별도의 논문에서 상업적으로 이용가능한 POLLED 정자를 생산하는 씨수소의 부족과 뿔없는 홀스타인 종우의 "유전적 장점"이 매우 빈약하다고 하였다. 그들은 POLLED 형질의 육종은 우유 생산량이 떨어지는 것과 같은 다른 바람직하지 않은 형질을 가져온다고 말했다.22

유전자 편집에 비해 느린 기존 육종 프로그램의 속도는 두 저자 모두에 의해 인용되었다.22,24

그러나 이것은 유럽에서는 사실이 아닌 것 같다.27 미국 펜실베이니아주의 뿔없는소 육종가에 따르면, 유럽인은 "공격적으로 그 형질을 선택했습니다. 지금은 뿔없는소 유전학에 관한 한 우리보다 몇 년 앞서 있습니다. 소비자 압력에 기반한 유럽의 동물 복지 법안은 뿔없는소의 이용을 더욱 촉진할 겁니다.”27

네덜란드의 Hul-Stein 홀스타인 소의 공동 소유주인 Hendrik Albada는 뿔없는소는 유전적 장점만으로도 유럽에서 인기가 높다고 말했다. 2015년 독일의 소 중 거의 10%가 뿔없는 소로 사육되었다.27

GMO 옹호자들이 유전자편집 기술을 통해서만 빠르게 달성할 수 있다고 주장했던 것을 기존 육종 방식에서는 이미 달성한 것 같다. 관련된 비용과 시간이 그리 큰 것은 아니다. 뿔없는소는 큰 유전적 장점으로 생산된다. 뿔없는 씨수소의 가용성에 있어 좋은 진전이 있어 왔다.

이 예는 유전자편집이 주어진 문제에 대한 유일한 또는 최선의 해결책이라는 주장을 사회가 비판적으로 평가할 필요가 있음을 보여준다.
 




원치 않는 돌연변이가 있는 유기체가 육종 프로그램에서 제거되지 않을 수 있다.

GMO 개발자들은 종종 유전적 오류가 있거나 원치 않는 형질이 있는 유전자편집 유기체는 육종 프로그램에서 제거될 것이라고 주장하거나,24 후속 역교배를 통해 오류가 제거될 수 있다고 주장한다. 따라서 그들은 아무런 걱정을 하지 않는다.

그러나 예기치 않게 항생제 내성 유전자를 포함하는 것으로 밝혀진 유전자편집 소의 경우(위 참조) 유전적 오류 및 원치 않는 형질을 식별하는 데 있어서 GMO 개발자에 의존할 수 없으며 철저한 스크리닝을 시행하기 위해 엄격한 규제가 마련되어야 함을 보여준다.28

1세대 GM 작물에 대한 경험에 따르면 GMO 개발자가 수행한 역교배는 원치 않는 형질을 안정적으로 제거하지 않으며 그런데도 그러한 형질을 가진 작물이 시장에 출시되었음을 보여준다.

예를 들어, 글리포세이트 내성 NK603 옥수수의 경우, NON-GM 작물과 비교해 볼 때, GM 작물에서 특정 화합물의 증가가 발견되었으며, 이는 문맥에 따라 보호적이거나 또는 독성적임을 나타낼 수 있다. 또한 GM 옥수수에서 대사 불균형이 발견되었는데 이는 영양의 질에 영향을 미칠 수 있다.29 이러한 원치 않는 변화는 옥수수 섭취로 인해 관찰되어온 부정적인 건강 영향을 설명할 수 있다.30 GM MON810 Bt 살충 옥수수의 경우, zein이라는 알레르겐을 함유하고 있는데 그것은 부모 작물에는 없던 것이었다.31 개발자가 이러한 변경 사항을 눈치채지 못했거나, 발견하였다면 중요하지 않은 것으로 간주했을 수 있다. 

감자, 바나나 및 과일 나무와 같이 GM으로 번식한 작물의 경우 원치 않는 돌연변이가 많이 존재하는 것은 불가피하다. 번식은 유성생식(꽃가루 수정)에 의해 생성된 종자가 아니라 괴경(예: 감자), 절단(예: 바나나) 및 접목(예: 사과와 같은 과일 나무) 방식의 재배와 같은 부모 식물의 일부에서 새로운 식물을 자라게 하는 다양한 무성 방법에 의해 발생하기 때문이다. 이것은 유전공학 과정(유전자편집 포함)으로 인한 돌연변이가 역교배에 의해 제거될 수 없으며 최종 시판 제품까지 지속된다는 것을 의미한다.

구세대 GMO보다 안전하지 않은 유전자편집 유기체
 
유전자편집 유기체가 구세대 GMO보다 더 안전하다는 것은 일반적인 오해이다.
그러나 바이엘의 과학자 래리 길버트슨(Larry Gilbertson) 박사가 확인한 바와 같이 이 개념에는 과학적 근거가 없다. 그는 유전자편집과 같은 새로운 기술과 유전자 변형의 구세대 기술의 위험은 동일하다고 말했다. "둘 다 근본적으로 DNA의 변화일 뿐이기 때문에 이 두 기술 간의 위험에 근본적인 차이가 있다고 생각하지 않습니다.”32

2018년에 이 과학적 현실은 유전자편집 유기체(이 경우 "새로운 기술/돌연변이 유발 방법"이라고 함)가 구세대 GMO와 동일한 방식으로 규제되어야 한다는 유럽사법재판소의 판결에 반영되었다.
법원은 다음과 같이 설명했다. “돌연변이의 새로운 기술/방법의 사용과 관련된 위험은 형질전환을 통한 GMO의 생산 및 방출로 인한 위험과 유사한 것으로 판명될 수 있다. 돌연변이 유발을 통해 유기체의 유전 물질을 직접 변형하는 것은 유기체에 외래 유전자를 도입하는 것과 동일한 효과를 얻을 수 있고(형질전환), 이러한 새로운 기술을 통해 기존의 돌연변이 유발 방법을 적용한 것보다 훨씬 빠른 속도로 유전자 변형 품종을 생산할 수 있기 때문이다.”33

유전자편집 기술은 이전 스타일의 유전자 변형 GM 기술과 비교하여 새롭고 다른 위험을 내포하고 있다. 따라서 일부 과학자들은 이러한 위험을 고려하기 위해 EU의 위험 평가 지침을 확대해야 한다고 주장한다.8,15,16 흥미롭게도 바이엘 과학자도 유럽사법재판소도, 그리고 유전자편집의 특별한 위험에 대해 경고하는 과학자도 모두 유전자편집 유기체가 이전 스타일의 트랜스제닉 GMO보다 더 안전하다는 주장을 지지하지 않는다. 그러한 주장은 과학이 아니라 마케팅 문제를 기반으로 한다.

오해의 소지가 있는 유전자편집과 돌연변이 육종과의 비교

유전자편집을 옹호하는 사람들은 그것이 돌연변이 육종보다 정확하고 안전하다고 주장한다.34 그러나 이 주장은 잘못된 비교이기 때문에 오해의 소지가 있다. 돌연변이 육종은 기존의 육종과 함께 사용되지만, 그것은 기존의 육종과 동일시될 수 없는 소수의 방법이다. 기존 육종의 표준 방법은 교배종과 원하는 형질의 선택이다. 마커 보조 선택 및 게놈 선택35,36으로 알려진 생명공학을 사용하여 프로세스를 더 빠르고 효율적으로 만들 수 있다(이러한 기술을 사용한다고 해서 GMO가 되는 것은 아니다). 기존의 표준 육종은 부정할 수 없는 안전한 사용의 역사를 가지고 있으며 유전자편집 작물에 대한 비교 수단으로 사용해야 하는 기술이다.

3장에서 보았듯이 유전자편집은 돌연변이 육종과 다르며 다른 위험을 초래할 것이다. 돌연변이 육종이 건강과 환경에 얼마나 위험한지는 아직 알려져 있지 않다. 돌연변이 육종이 유전자편집보다 덜 위험할 수 있다는 암시적 증거가 있지만 통제된 ​​연구가 수행되지 않았기 때문이다.8

그럼에도 불구하고 식물 자체의 경우 돌연변이 육종은 위험하고 예측할 수 없으며 유익한 돌연변이를 생성하는 데 비효율적인 것으로 널리 알려져 있다.
식물 세포는 화학 물질이나 방사선에 노출되면 죽을 수 있고, 결과로 생긴 많은 식물도 기형이거나, 생존 불가능하거나 불임이다.37,38,39

돌연변이 육종은 EU 법에 따라 유전자 변형으로 인정된다. 안전한 사용 이력이 있는 것으로 간주되기 때문에 (위해성에 대한 연구가 없음에도 불구하고) 규정의 요건에서 제외된다.40 그러나 이것은 안전한 사용은 고사하고 사용 이력이 전혀 없는 유전자편집에는 분명히 적용되지 않는다.8

규제 감독의 핵심
 
유전자편집 기술은 인간과 동물의 건강과 환경에 위험을 초래할 수 있는 의도하지 않은 결과를 생성한다. 개발자가 원치 않는 결과를 제거할 수 있다고 낙관하다지만, 다음 사항을 수행하지 않는다.

• 의도치 않은 결과를 적절하게 선별하기 – 시간을 벌기 위해 유전자편집을 사용하는 목적을 무효화하기 때문일 것이다.
• 확실히 제거하기
• 항상 그러한 것을 제거할 수 있는 능력이 있다(식물성 번식 작물로).

이러한 이유로 FDA 과학자인 Steven M. Solomon이 미국에서 유전자편집 동물에 대해 권장했던 것처럼28, 그리고 유럽사법재판소가 EU의 모든 유전자편집 유기체에 대해 판결한 것처럼 엄격한 규제 감독이 중요하다.
 

 

REFERENCES

 

1.                   Bayer. Here are the facts about agriculture and nutrition. Published online November 2018. https:// release.ace.bayer.com/sites/default/files/2020-04/here-are-the-facts-about-agriculture-and-nutrition-brochure. pdf

 

2.                    Corteva Agriscience. Frequently Asked Questions. crispr.corteva.com. Published 2021. Accessed January 11, 2021. https://crispr.corteva.com/ faqs-crispr-cas-corteva-agriscience/

 

3.                    EuropaBio. Achieving the potential of genome editing. EuropaBio.org. Published June 2019. Accessed January 10, 2021. https://www.europabio.org/cross-sector/ publications/achieving-potential-genome-editing

 

4.                   Corteva Agriscience. CRISPR Q&A – For internal use only. Published online May 28, 2019. https:// crispr.corteva.com/wp-content/uploads/2019/05/ FINAL_For-Internal-Use-Only_Corteva-CRISPR-QA-UPDATED-5.28.19.pdf

 

5.                    Tuladhar R, Yeu Y, Piazza JT, et al. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun. 2019;10(1):1-10. doi:10.1038/s41467-019-12028-5

 

6.                    Mou H, Smith JL, Peng L, et al. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biology. 2017;18:108. doi:10.1186/s13059-017-1237-8

 

7.                   Smits AH, Ziebell F, Joberty G, et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods. 2019;16(11):1087-1093. doi:10.1038/ s41592-019-0614-5

 

8.                    Kawall K, Cotter J, Then C. Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environmental Sciences Europe. 2020;32(1):106. doi:10.1186/s12302-020-00361-2

 

9.                   Agapito-Tenfen SZ, Okoli AS, Bernstein MJ, Wikmark O-G, Myhr AI. Revisiting risk governance of GM plants: The need to consider new and emerging gene-editing techniques. Front Plant Sci. 2018;9. doi:10.3389/ fpls.2018.01874

 

10. European Network of Scientists for Social and Environmental Responsibility (ENSSER). ENSSER Statement: New Genetic Modification Techniques and Their Products Pose Risks That Need to Be Assessed. European Network of Scientists for Social and Environmental Responsibility (ENSSER); 2019. https:// ensser.org/publications/2019-publications/ensser-statement-new-genetic-modification-techniques-and-their-products-pose-risks-that-need-to-be-assessed/

 

11.       GMWatch. Gene editing: Unexpected outcomes and risks. GMWatch.org. Published August 3, 2020. Accessed January 11, 2021. https://www.gmwatch.org/ en/67-uncategorised/19499-gene-editing-unexpected-outcomes-and-risks

 

12.               Ono R, Yasuhiko Y, Aisaki K, Kitajima S, Kanno J, Hirabayashi Y. Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing. Commun Biol. 2019;2(1):1-8. doi:10.1038/s42003-019-0300-2

 

13. Norris AL, Lee SS, Greenlees KJ, Tadesse DA, Miller MF, Lombardi HA. Template plasmid integration in germline genome-edited cattle. Nat Biotechnol. 2020;38(2):163-164. doi:10.1038/s41587-019-0394-6

 

14.Latham J. Gene-editing unintentionally adds bovine DNA, goat DNA, and bacterial DNA, mouse researchers find. Independent Science News. https:// www.independentsciencenews.org/health/gene-editing-unintentionally-adds-bovine-dna-goat-dna-and-bacterial-dna-mouse-researchers-find/. Published September 23, 2019.

 

15. Eckerstorfer M, Miklau M, Gaugitsch. New Plant Breeding Techniques and Risks Associated with Their Application. Environment Agency Austria; 2014. http:// www.ekah.admin.ch/fileadmin/ekah-dateien/New_ Plant_Breeding_Techniques_UBA_Vienna_2014_2.pdf

 

16. Eckerstorfer MF, Dolezel M, Heissenberger A, et al. An EU perspective on biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs). Front Bioeng Biotechnol. 2019;7. doi:10.3389/fbioe.2019.00031

 

17.                   Robinson C, Antoniou M. Science supports need to subject gene-edited plants to strict safety assessments. GMWatch.org. Published November 20, 2019. https:// www.gmwatch.org/en/news/latest-news/19223

 

18.                   Biswas S, Tian J, Li R, et al. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. Journal of Genetics and Genomics. Published online May 21, 2020. doi:10.1016/j. jgg.2020.04.004

 

19.                   Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry. 2016;85(1):227-264. doi:10.1146/ annurev-biochem-060815-014607

 

20.                   Zetsche B, Heidenreich M, Mohanraju P, et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nature Biotechnology. 2017;35(1):31-34. doi:10.1038/nbt.3737

 

21.                   Raitskin O, Patron NJ. Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Curr Opin Biotechnol. 2016;37:69-75. doi:10.1016/j. copbio.2015.11.008

 

22.                   Carlson DF, Lancto CA, Zang B, et al. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology. 2016;34:479-481. doi:10.1038/ nbt.3560

 

23.                    Regalado A. Gene-edited cattle have a major screwup in their DNA. MIT Technology Review. Published online August 29, 2019. Accessed March 20, 2020. https://www. technologyreview.com/s/614235/recombinetics-gene-edited-hornless-cattle-major-dna-screwup/

 

24.                   Carroll D, Van Eenennaam AL, Taylor JF, Seger  J, Voytas DF. Regulate genome-edited products, not genome editing itself. Nat Biotechnol. 2016;34(5):477-479. doi:10.1038/nbt.3566

 

25.                   Nawaz MA, Mesnage R, Tsatsakis AM, et al. Addressing concerns over the fate of DNA derived from genetically modified food in the human body: A review. Food Chem Toxicol. 2018;124:423-430. doi:10.1016/j. fct.2018.12.030

 

26.                   Molteni M. Brazil’s plans for gene-edited cows got scrapped—Here’s why. Wired. Published online August 26, 2019. Accessed June 7, 2020. https://www.wired. com/story/brazils-plans-for-gene-edited-cows-got-scrappedheres-why/

 

27.                  O’Keefe K. Polled Holsteins: Past, present and future. Progressive Dairy. Published online October 18, 2016. Accessed January 10, 2021. https:// www.progressivedairy.com/topics/a-i-breeding/ polled-holsteins-past-present-and-future

 

28.                   Solomon SM. Genome editing in animals: why FDA regulation matters. Nat Biotechnol. 2020;38(2):142-143. doi:10.1038/s41587-020-0413-7

 

29.                   Mesnage R, Agapito-Tenfen SZ, Vilperte V, et al. An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Scientific Reports. 2016;6:37855. doi:10.1038/srep37855

 

30.Séralini G-E, Clair E, Mesnage R, et al. Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Environmental Sciences Europe. 2014;26(14). doi:10.1186/ s12302-014-0014-5

 

31.Zolla L, Rinalducci S, Antonioli P, Righetti PG. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res. 2008;7:1850-1861. doi:10.1021/pr0705082

 

32. Fortuna G, Foote N. Bayer scientist: “Regulation and risk assessment must evolve with technology.” EurActiv. com. Published online December 11, 2019. Accessed January 8, 2021. https://www.euractiv.com/section/ agriculture-food/video/bayer-scientist-regulation-and-risk-assessment-must-evolve-with-technology/

 

33. European Court of Justice. C-528/16 - Confédération Paysanne and Others: Judgement of the Court. (European Court of Justice 2018). Accessed September 27, 2019. http://curia.europa.eu/juris/documents. jsf?num=C-528/16

 

34. Askew K. CRISPR genome editing to address food security and climate change: “Now more than ever we are looking to science for solutions.” foodnavigator.com. Published online May 4, 2020. Accessed January 29, 2021. https://www.foodnavigator.com/Article/2020/05/04/ CRISPR-genome-editing-to-address-food-security-and-climate-change-Now-more-than-ever-we-are-looking-to-science-for-solutions

 

35. Cobb JN, Biswas PS, Platten JD. Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet. 2019;132(3):647-667. doi:10.1007/ s00122-018-3266-4

 

36. Arruda MP, Lipka AE, Brown PJ, et al. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breeding. 2016;36(7):84. doi:10.1007/ s11032-016-0508-5

 

37. Acquaah G. Principles of Plant Genetics and Breeding. Wiley-Blackwell; 2007. http://bit.ly/17GGkBG

 

38. Van Harten AM. Mutation Breeding: Theory and Practical Applications. Cambridge University Press; 1998.

 

39.       GM Science Review Panel. First Report: An Open Review of the Science Relevant to GM Crops and Food Based on Interests and Concerns of the Public. DEFRA; 2003. https://www.researchgate.net/ publication/272998451_GM_SCIENCE_REVIEW_ FIRST_REPORT_An_open_review_of_the_science_ relevant_to_GM_crops_and_food_based_on_interests_ and_concerns_of_the_public

 

40. European Parliament and Council. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. Official Journal L. 2001;106:1-39. http://eur-lex.europa.eu/ legal-content/en/TXT/?uri=CELEX%3A32001L0018

ntent/en/TXT/?uri=CELEX%3A32001L0018

다음검색
현재 게시글 추가 기능 열기
  • 북마크
  • 공유하기
  • 신고하기

댓글

댓글 리스트
맨위로

카페 검색

카페 검색어 입력폼