CAFE

대학생,일반 수학

Re:위상수학 연결성 질문입니다.

작성자비는아픔|작성시간11.07.17|조회수95 목록 댓글 2

 

Before starting, we must accept the following theorem.

Theorem(well-known)
X, Y : connected
If X\cap Y is nonempty, then X\cup Y is connected.

 

It is easy to check that X\times Y - A\times B = ((X-A)\times Y)\cup (X\times(Y-B))   \ldots \odot

 

Define W(x) := \{x\}\times Y and Z(y) := X\times \{y\}.

 

Note that if x\in X-A and y\in Y-B, both W(x) and Z(y) are nonempty and connected by \odot.
(They are homeomorphic to Y and X respectively.)

 

Fix (a,b) \in (X-A)\times (Y-B).
(They exist because A and B are proper subsets of X and Y respectively.)

 

Define U(x):=W(x)\cup Z(b) and V(y):=W(a)\cup Z(y).

 

Then each U(x) for x\in X-A and V(y) for y\in Y-B is connected by the Theorem.
((x,b)\in W(x)\cap Z(b) and (a,y)\in W(a)\cap Z(y))

 

Moreover, \displaystyle \bigcup_{x\in X-A} U(x) and \displaystyle \bigcup_{y\in Y-B} V(y) are connected by the Theorem, too.
(\displaystyle (a,b)\in \bigcap_{x\in X-A} U(x) and \displaystyle (a,b)\in \bigcap_{y\in Y-B} V(y))

 

Now observe that
\displaystyle (\bigcup_{x\in X-A} U(x)) \bigcup (\bigcup_{y\in Y-B} V(y))

 

= (Z(b)\bigcup((X-A)\times Y)) {\displaystyle\bigcup} (W(a)\bigcup(X\times (Y-B))).

 

\displaystyle = ((X-A)\times Y)\bigcup (X\times(Y-B))

 

\displaystyle = X\times Y - A\times B (finally by \odot)

 

is connected by the Theorem once again.
(\displaystyle (a,b)\in (\bigcup_{x\in X-A} U(x)) \bigcap (\bigcup_{y\in Y-B} V(y)))

다음검색
현재 게시글 추가 기능 열기

댓글

댓글 리스트
  • 작성자비는아픔 작성자 본인 여부 작성자 | 작성시간 11.07.17 안보이시면 말씀하세요 ㅠ.ㅠ
  • 작성자김수학 | 작성시간 11.07.17 잘보입니다 감사드려요~~
댓글 전체보기
맨위로

카페 검색

카페 검색어 입력폼