CAFE

대학생,일반 수학

Re:대수입니다. 증명 좀 부탁드립니다. 아시는 분 좀 까다라운 문제라서 도저히 모르겠네요.

작성자비는아픔|작성시간11.07.21|조회수127 목록 댓글 1

Let D be an integral domain and \phi :D\rightarrow D be a ring homomorphism.


Then \phi (1)=\phi (1)^{2} so \phi (1) = 0 or 1.


If \phi (1) = 0, trivially \phi\equiv 0.


Now suppose \phi (1) = 1 and D=\mathbb{Q}.


For any x=\frac{p}{q}\in\mathbb{Q} (p,q\in\mathbb{Z} and q is nonzero),


q\phi (x) = \phi (qx) = \phi (p) = p\phi(1) = p so \phi (x)=\frac{p}{q}=x, i.e., \phi=\textrm{id}.


Finally assume that \phi (1)=1 and D=\mathbb{R}.


For any nonnegative x\in\mathbb{R}, \phi (x) = \phi (\sqrt{x}^{2}) = \phi(\sqrt{x})^{2}\geq 0.

 

This implies for any a,b\in\mathbb{R} with a\geq b, 0\leq\phi (a-b)=\phi (a)-\phi (b) so \phi is increasing.

Now noting that \phi (q) = q if q\in\mathbb{Q} as we’ve seen just before, suppose x_{0} < \phi (x_{0}) for some x_{0}\in\mathbb{R}.

 

Since \mathbb{Q} is dense in \mathbb{R}, there exists q_{0}\in\mathbb{Q} such that x_{0}<q_{0}=\phi (q_{0})< \phi (x_{0}).

 

This contradicts the fact that \phi is increasing.


On the other hand, the case that x_{0}>\phi (x_{0}) also derives a contradiction similarly.

 

Hence \phi(x)=x for every x\in\mathbb{R}, i.e., \phi=\textrm{id}.

다음검색
현재 게시글 추가 기능 열기

댓글

댓글 리스트
  • 작성자항상한상 | 작성시간 11.07.22 답변 달아주셔서 감사합니다.~~
댓글 전체보기
맨위로

카페 검색

카페 검색어 입력폼