CAFE

STM32 MCU에서 AI모델(Keras/TFLite)로 개발하기

작성자코드메이커|작성시간20.12.26|조회수908 목록 댓글 0

STM32 MCU에서 Keras 또는 TensorFlow Lite에서 생성된

딥러닝 모델을 이용하여 STM32 기반의 application을 만들어 볼 수 있습니다.

 

이와 관련된 좋은 유투브 강좌를 발견하여 아래와 같이 공유합니다.

https://www.youtube.com/watch?v=PuefXy-Xpc4&t=72s

 

기존에 MCU벤더들이 자사의 MCU에서 AI모델을 활용하여 자신의 어플리케이션을

만들수 있도록 제공하는 툴들이 각각 있습니다.

 

예를들어, 텐서플로우 라이트도 TFLite Micro 라는 TFLite를 지원하는 보드들이 있는데,

이를 활용하여 사용하는 방식과

기존 벤더들이 AI모델을 제공하는 절차는 기본적으로 동일합니다.

 

예를들어, 텐서플로우 라이트도 TFLite Micro 라는 TFLite를 지원하는 보드들이 있는데,

이를 활용하여 사용하는 방식과

기존 벤더들이 AI모델을 제공하는 절차는 기본적으로 동일합니다.

 

참고로 TFLite Micro는 esp32등 특정 STM32보드, SparkFun Edge보드 등 다양하게 지원합니다.

즉, TFLite 컨셉은 좀 다양한 보드를 위한 범용성에 있는 걸로 압니다.

 

참고로, Cube-AI와 같은 소프트웨어 팩을 이용한 STM32도 cortex-M4 계열 이상에서만 

최소한 사용가능하고 또 어떤 모델을 사용하는냐에 따라 ROM, RAM사이즈도 고려해서 

보드 선택들 해야 합니다.

 

위 링크와 같이, STM32에서 어떻게 AI모델을 만들 수 있는지 알려주고 예제를 실제로 구동하는 방법을

알려줍니다.

 

유용할 것 같아 공유해봅니다.

참고로, 동시에 여기에도 글이 올라갑니다.

 

다음검색
현재 게시글 추가 기능 열기

댓글

댓글 리스트
맨위로

카페 검색

카페 검색어 입력폼